
On the Pade approximations to the Birkhoff-Gustavson normal form

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 7427

(http://iopscience.iop.org/0305-4470/26/24/017)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 26 (1993) 7427-7434. Printed in the UK 

On the Pad6 approximations to the Birkhoff-Gustavson 
normal form 

Marko Robnik 
Center for Applied Mathematics and Thearetical Physics, University of Maribor, Krekova 2, 
SLO-62OM) Maribor, Slovenia 

Received 14 June 1993, in final form 12 October 1993 

Abstract. \ye demonstrate the efficiency of the Pad6 approximations to the Birkhoff-Gustavson 
normal form and lo the associated formal integrals of motion for the w e  of the H&on-Heiles 
system. The accuracy of the formal integrals of motion in the regutar regions where invariant tan 
exist is vastly improved, with the tendency lhat the poles of Pad6 approximarions are located 
in the chaotii regions of the surface of section, The special case of the integrable Hhn- 
Heiles system is an excellent example showing that here the poles of the Pad6 approximalions 
are located in classically forbidden reg?” The I4th-order formal integral does not yet agree 
with Ule exact (numerical) surface of section, whilst ill r5.51 Pad6 approximation dces (within 
the limits of graphical resolution). These findings re-wnfvm the Shirts-Reinhardt picture, and 
supplement the recent paper by Kaluia and RobniL 

In a recent paper (Kaluia and Robnik 1992; henceforth referred to as KR) we have expounded 
the method of the Birkhoff-Gustavson normal form, which is suitable and systematic for 
Hamiltonian systems of N degrees of freedom for which the Hamiltonian can be represented 
by an N-dimensional harmonic oscillator plus a series of higher-order monomial terms, 
which make the system’s dynamics nonlinear and typically non-integrable and hence chaotic. 
The method is due originally to Birkhoff (1927) and Gustavson (1966); the method has 
been further developed by Robnik (1984), see also Eckhardt (1986). We have analysed 
its applicability in the generic systems of mixed type classical dynamics (typical KAM 
systems in which the regular regions covered with smooth invariant tori coexist in the 
energy surface (and surface of section (SOS)) with the chaotic regions), and investigated its 
convergence and divergence properties in relation to the geometry of the dynamics (phase 
portrait). In the specific case of the Htnon-Heiles system investigated numerically we have 
found that the formal integrals of motion (calculated up to and including the 14th order) 
did behave convergently in the classically regular regions. and even in chaotic regions 
with short-time clustering characterized by a small value of the finite-time analogue of the 
Lyapunov exponent. This is surprising since the Birkhoff-Gustavson normal form and the 
associated formal integrals of motion are of course known, in general, to be at best only 
an asymptotic series. The significance of our findings in (KR) is thus in showing that under 
certain conditions the optimal cut-off term in the series can be of very high order, and that 
the optimally cut-off series can be a good approximation to those invariant tori that still 
rigOrOUSly &St (as KAM t0ri)t. 

t For general camments on the Borei summability and on the approximations to lhe Borei sums of asymptotic or 
divergent series see. e.g. Killingbeck (1977) and references therein. 
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These results provide additional support for the Shirts-Reinhardt picture (198% 
henceforth referred to as SR), employing somewhat simpler tools and analysis. In fact, 
(SR) have also analyscd the scheme of Pad6 approximations as a suitable re-summation 
technique for the Birkhoff-Gustavson normal form and for the associated formal integrals. 
They have shown that this works well, and the goal of the present short paper is to offer 
additional results demonstrating the usefulness of the Pad6 approximationst, thereby making 
the results and conclusions of (SR) more quantitative (cf KR). 

We omit all the technical details, the mathematical derivation and the description of the 
Birkhoff-Gustavson normal form (which can be found in (KR)), and concentrate only on the 
final results for the classic Hhon-Heiles system (H6non and Heiles 1964) with two degrees 
of freedom, defined by 

where ~ 1 . ~ 2  are the coordinates and y,, yz are their conjugate momenta and h = 1, 

The unperturbed frequencies are W I  = m = 1, so there is a 1-fold resonance. 

to Gustavson (see equation (7) in (KR)) the formal integral of motion is 

q = - L  3 .  w e shall call the Hamiltonian (1) the generalized Hknon-Heiles Hamiltonian. 

The commensurability matrix has the matrix elements (111 = 1, (112 = -1. According 

I = I ]  = 71 + 72 = !j(i; f 7: + .?; + 7;) (2) 

where ii and j ;  are the transformed final coordinates and momenta, respectively. As is 
customarily done in the literature (Gustavson 1966, SR, KR) we define the integral of motion 
as 

K = I - H .  (3) 

We have used the symbolic algebra program (KaluZa 1993), written in the programming 
language REDUCE (Heam 1987). to calculate the series of the normal form Hamiltonian 
and of the approximate integrals of motion for the generalized H6non-Heiles system. 
The program works for any Hamiltonian system with polynomial potential with a non- 
vanishing harmonic part, and for any number of degrees of freedom. The calculation 
for the two-dimensional Hinon-Heiles system provides a good test of the code. We 
have checked all numerical coefficients given in Gustavson (1966) and found a perfect 
agreement, except for the following well understood differences: there is a single sign 
error in the coefficient l(185) for the integral of motion in his table IV, and a number of 
differences in coefficients of the normal form Hamiltonian and the approximate integral in 
higher orders, which most probably come from the roundoff errors and their propagation 
in his numerical procedure. KaluZa’s program (KaluZa 1993) is written in REDUCE with 
infinite precision and is as general as possible, so that his scheme is certainly better than 
Gustavson’s (1966) and Giorgilli’s (1979) (both written in FORTRAN), since sometimes in 
the latter ones the accumulated numerical roundoff errors can be considerable. As one 

t For one-dimensional systems a similar analysis has been extensively performed by Ali et ai (1986). However, 
onedimensional systems are always inlegrable (and also ergodic!), and never show a chaotic behaviour. so the 
applicability of the Birkhoff-Gustavson normal form is .U the same Lime rather saalghtforward and very successful. 



Padk approximations to the Birkhof4ustavson normal form 7429 

example, Gustavson’s (1966) coefficient I(427) = 70.817 255 should read 70.817 274. We 
are absolutely confident that KaluZa’s program is flawless. 

The fourth-order integral Kt4’ has the following expression in terms of original variables 
on the surface of section (SOS), defined by XI = 0 and y1 > 0 

(4) 
12 
48 ~ ( 4 ) 1 ~ ~ ~  = -(45q2(x; + y;)* + 6q(7x; + 5y;)y: + ( -44 + zoY; + ~ ~ 3 ~ : ) .  

l a ’  I 
I ------7 

Figure 1. The SOS for the Henon-Heiles system at the energy E = I j S  (= cridcal energy). 
(a )  The exaci (numericel) P o i n d  plot. ( b )  The curves of canslant value of the approximate 
integral of motion K“” = I ( ” )  - H (14th order). (c)  The same-height contours of the 15.51 
Pad6 approximant (io lhe 14th-order formal integral). 

The C U N ~ S  in ( U )  are obtained using a fourth-order Runge-Kutta integration method with the 
time step h = 0.001. The parameters of the Hdnon-Heiles Hamiltonian are A = I, q = -113. 
The surface of section is defined by the conditions XI = 0 and y~ > 0. The x axis represenu 
the coordinate x2 and the y axis represents the momenlum y1. The range of both quantities is 
I- 1.0, 1.01. Note the tendency of the poles of the PaAe approximations 10 cluster in the chaotic 
regions. Also. the cenud region of the largest stability island shown in (a)  is deswited much 
belter by the [S. 51 Pad6 approximant than by the I4th.order formal integral itself. 
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We have been able to obtain the approximate integrals up to and including the fourteenth 
order in powers of coordinates and momenta. This is one order beyond the previously 
published results for the Hknon-Heilcs system (sR). The result enables me to calculate (in 
the present short paper) the Pad6 approximations (of order [ 5 , 5 ] ) ,  to the 14th-order formal 
integral K'I4' using the very efficient so called epsilon algorithm (Wynn 1956, Macdonald 
1964). This is again one order higher than in (SR) (see also Shirts and Reinhardt 1981) and 
in Jaffe and Reinhardt (1982). I do not consider the non-diagonal approximants [ L ,  MI,  
where L differs from M ,  since there is no deep reason to do so. On the contrary, it is 
expected that the degree and quality of approximation is best in the case of the diagonal 
approximants. 

In figure l(o) we show the Poincar.6 plot on the SOS of the classic H€non-Heiles system 
at energy E = 1/8 = 0.125 (= critical energy). The contours of the 14th-order formal 
integral are shown in figure I@) ,  and the same height contours of the corresponding E 5 1  
Pad6 approximation are given in figure I(c). Of course, the poles are marked simply by 
the high density contours. As is readily seen the poles of the Pad6 approximant show a 
tendency to be located within the chaotic regions. This is intuitively obvious since in the 
regular regions there might exist smooth local integrals of motion, but it is good to have the 
confirmation. As the order of the formal integral of motion increases, so that the order M 
of the Pad6 approximations [ M ,  MI can be increased, one expects that the poles will move 
to chaotic regions, and the Pad6 approximations are expected to become better and better 
in the regular regions, even if the formal integrals themselves actually diverge. The Pad6 
approximations are thus an efficient approximation to the local KAM integrals of motion. One 
should observe that the central region of the largest stability island in figure 1 is significantly 
better described by the Pad6 approximant [ 5 , 5 ]  than by the 14th-order formal integral from 
which it is derived. Thus, the Pad6 approximations are significant and efficient. 

In figure 2(aXc)  we show the magnified central region of the largest stability island of 
figure I@), together with contours of constant 14th-order formal integral in figure l(b) and 
the same height contours of the [5,51 Pad6 approximant. We also show three other magnified 
small regions of figure I(a), in figure 2 ( d H f ) ,  (gXi )  and U)-(!). The general conclusion 
is that the Pad6 approximations do indeed improve the quality of the approximation to the 
formal integrals as obtained by the Birkhoff-Gustavson normal form, and that there is a 
general tendency to push the poles into the chaotic regions. so that in the regular regions 
the Pad€ approximations are smooth at sufficiently high order. At the same time we see 
how difficult it is to capture the fine structure of the small regular regions. Obviously, much 
higher orders of Pad€ approximations are needed to achieve this. 

Figure 2. (Opposite) The applicabilily of lhe formal integral of motion (14th order) and of the 
[S. 51 Pad6 approximations of the Henon-Heiles system at the energy E = I18 ili critical energy, 
in four small and magnified regions of figure 1. In parts (a), (d),  (s). (i) (the first column, 
from top to bottom) we show the Poimad plots, in (b). (e). (h). ( k )  (the second column) the 
conlours of constant value of the 14th-order formal integral, and in parts (c ) ,  (f). ( i ) .  ( I )  (the 
third column) the contours of the same consfant value of the [S. 51 Pad6 approximations. The 
contours with values from -0.020 to 0.020 in sleps of 0,0005 are shown. The parameters of 
the Henon-Heiles Hamiltonian are A = I, r )  = -113. The surface of section is defined by 
the conditions XI = 0 and y~ > 0. The x axis represents the coordinate x2 and the y axis 
represents the momenlum n. The range of both quantities is: [0.1.0.51 x 1-0.2.0.21 in (aHc) 
(the first row): I-0.2.0.21 x [O.I .  0.41 in ( d W )  (the second row): L-0.3.0.11 x [-0.2.0.21 
in @Hi) (the third row): [0.2,0.41 x [-0.3. -0.11 in VX/) (the founh row). In (aHc) it 
is seen that the Pad6 approximation yields a considerably improved description of this central 
region of L e  largest stability island (seen in figure I(o)). The general trend of the poles of Pad6 
approximations U) cluster in h e  chaotic regions is clearly visible. 
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Finally, we present the results for the special case of the integrable Henon-Heiles 
system, which is the special case of the generalized H6non-Heiles system ( I )  for any X and 
7 = 2. This system is well known to be integrable (Bountis er a1 1982). The exact integral 
of motion can be expressed as 

(5) I, = h2xf + 4h 2 2 2  X I X *  - 4hyl(ylx* - yzxd + 4 h 4 x 2  + 3(y: fx:). 

In figure 3(a) we show the exact Poincar6 plot in the SOS for this system with X = -1, at 
the energy E = 0.004, identical to the corresponding contours of the exact integral of motion 
(5). In figure 3(b) the corresponding contours of the 14th-order formal integral of motion 
are shown, and in figure 3(c) the same height contours of the 15.51 Pad6 approximant are 

Figure 3. The applicability of the 14th-order formal integral of motion and the corresponding 
[S. SI Pad6 approximanl for the integrable H6nowHeiles system ( I )  with h = - I ,  and = 2 al 
energy E = 0.004. ( a )  The Poinear6 plot on the SOS as obtained by exact numerical integralion. 
and also by the contours of the exaa integral of motion (5).  (b )  The curyes of constant value 
of the 14th-order formal integral of motion K"4' = - H as obtained by the Birkhoff- 
Gustavson normal form procedure. (c) The same height contours of the l5.51 Pad6 approximant 
to the 14th-order formal integral of motion. The contours with values from -0.020 Io 0.020 
in steps of 0.01 are shown. The surface of section is defined by the conditions xt = 0 and 
y~ > 0. The x axis represents the coordinate 1 2  and the y axis represents the momentum y2. 
The range of both quantities is [-0.2.0.21. It should be emphasized that there are no pales 
of the Pad6 appmximant inside the allowed region in lhe SOS, i.e. they are located svictly in 
classically forbidden regions in the phase space. 
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given. It should be noted that there are no poles inside the classically allowed region in the 
SOS (so they are located in the classically forbidden regions), and that the Pad6 approximant 
does not differ from the exact contourS whereas the 14th-order formal integral of motion 
is not yet satisfactory, since it significantly deviates from the exact curves at the rightmost 
parts of the contours. 

These findings do confirm the usefulness of the Pad6 approximations in improving the 
convergence and accuracy of the formal integrals of motion obtained within the framework 
of the Birkhoff-Gustavson normal form procedure. In particular. they confirm the Shirts- 
Reinhardt (SR) picture, and indicate that further research might give us even better tools to 
construct an efficient and systematic approximation to the integrals of motion where they do 
still exist locally (in the sense of the KAM theory). One additional theoretical step towards 
this goal might also be assisted by the approach of Bogomolny (1983.1984). where the 
singularities of the perturbation series are associated with and related to the periodic orbits: 
the pa"bation series has a '. . . singularity of the type of the square rmt of some quadratic 
form near each periodic trajectory of the considered problem'. In this regard it would be 
helpful to obtain even higher orders of the formal integrals, for which one could explicitly 
employ the special symmetries of the H6non-Heiles system (see Finkler et a1 1991). 

It should be noticed that the Birkhoff-Gustavson normal form approach has been 
successful in classical, semiclassical and quantum applications for the Hknon-Heiles system 
(SR, Jaffe and Reinhardt 1982, Swimm and Delos 1979, Noid and Marcus 1977, Robnik 
1984, KR) and in the hydrogen atom in a strong magnetic field (Robnik 1981,1982, 
Hasegawa et a1 1989, Robnik and Schriifer 1985, Kuwata et a1 1990). and also in the 
one-dimensional anharmonic oscillators (Ali and Wood 1989, Ali and Snider 1989). The 
significance of such studies may be underlined by the remark that very.often the classical 
perturbation series (normal form) converge in the regions where the quantum perturbation 
series diverge, and in such cases the study of semiclassical approximations is especially 
instructive and useful. It might give us new clues towards the re-summation techniques 
in quantum perturbation methods. In general, further progress in this field might be very 
fruitful. 
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